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In this paper we continue our investigation of the ground states of the spinless 
Falicov Kimball model in the plane of chemical potentials of the two sorts of 
particles involved. We obtain a number of general properties of the phase 
diagram. We also derive an expansion for large values of the coupling constant, 
from which we deduce results concerning particular states. 
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1. I N T R O D U C T I O N  

This paper is a complement to our earlier work, ~1) in which we studied the 
zero-temperature phase diagram of the spinless Falicov-Kimball model. 
This model was originally proposed by Falicov and Kimball ~2) to describe 
a metal-insulator transition in solids. Later it was realized that the 
Falicov-Kimball model is also of interest to study mixed-valence 
phenomena and crystallization effects. (3'4) 

The system consists of noninteracting spinless fermions (here called 
electrons) on a lattice. These particles move in a potential assuming only 
two values + U at each site (here interpreted as the presence or absence of 
a classical ion). The density of ions and electrons can vary and is controlled 
by the corresponding chemical potentials/~i and #e. 
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In ref. 1 we used the moment method of Tchebycheff and Markov to 
determine domains in the plane of chemical potentials where the configura- 
tions of ions which minimize the energy of the system can be found. 
However, this method yields domains whose boundaries extend to infinity, 
while it is intuitively clear that they should remain bounded. Here, in 
particular, we fill this gap. 

In Section 2 we define the model. Then in consecutive subsections of 
Section 3 we present new results concerning the phase diagram together 
with their proofs. We also give a summary of the results previously 
obtained. Section 3.1 is devoted to symmetry and other general properties 
(independent of the value of the potential, of particular configurations of 
ions, and of the boundary conditions). Then in Section 3.2 we consider 
specific configurations of the ions, mainly the three following cases: the 
empty configuration, the fully occupied configuration, and the chessboard 
configuration. We consider the results obtained for the first two configura- 
tions particularly interesting. They reveal the distinguished role played by 
these two configurations in constructing an overall picture of the phase 
diagram. In particular, they imply that any other periodic configuration of 
ions can be a ground state only for chemical potentials which are strictly 
inside the domains represented in Figs. 1 and 2 (except for the trivial situa- 
tion where all configurations have the same energy). For example, the 
chessboard configuration cannot be a ground state for values of ]A e which 
are inside the energy bands of the chessboard Hamiltonian. Finally, in 
Section 3.3 we derive an expansion of the ground-state energy with respect 
to U -1. This expansion enables us to deduce some more details of the 
phase diagram for very large values of the potential. In particular, the 
results obtained in Section 3.3 prompt us to conjecture that the phase 
diagram of the 2-dimensional Falicov-Kimbalt model has a devil's-staircase 
structure. 

2. T H E  S P I N L E S S  F A L I C O V - K I M B A L L  M O D E L  

The model is defined on a finite cubic lattice A c Z  v by the 
Hamiltonian 

H= E txya+% +2U Z W(x) a+a~-#eNe-#i N, 
x , y ~ A  x E A  

(1) 

where a~ +, ax are the creation and annihilation operators for electrons 
+ + at site x (a x a y + a y a  x =6xy). The hopping matrix element txy is given 

by txy= 1 if ]x-yl = 1 and zero otherwise. The variable W ( x )  is 1 or 0 
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according to whether the site x is occupied or unoccupied by an ion. N~ 
and N~ denote the numbers of electrons and ions, i.e., 

N~= ~ a+a~, Ni= ~ W(x) (2) 
x ~ A  x ~ A  

and #e, #i are the corresponding chemical potentials. 
For symmetry reasons it is convenient to introduce the spin variable 

sx= 2 W ( x ) - 1  (s~= _+1) and to rewrite the Hamiltonian in the form 

H(s )=  ~ hxy(s) a+ ay - ~teNe - (fii + U) Ni(s ) (3) 
x , y ~ A  

where 

hxy(S) = txy + Usx6xy (4) 

is the matrix element of the single-particle operator 

h(s) = T +  U S  

and 

(5) 

[G = #e -- U, Ft~ = t~i- U (6) 

In the following we shall concentrate on the ion subsystem. It is thus useful 
to introduce the effective interaction F(s) between ions in the configuration 
s. This interaction is defined by means of the grand canonical partition 
function Z~: 

ZA = ~ Tr e x p [ - f l H ( s ) ]  = ~ exp[--flFA(S)] (7) 
{s} {~} 

The sum is over all possible ion configurations; the trace is over the 
21AI-dimensional electron Hilbert space. 

The effective interaction FA(S) depends on the temperature fi-1 and on 
the two chemical potentials fie and fii. Since we want to consider only zero- 
temperature properties of the system, we introduce the zero-temperature 
energy in the configuration s: 

1 lira FA(S) EA(~e, ~,; s ) = ~  e+ + 

1 
= ~ [e ( j , s ) - f io] - - ( f i~+U)p~(s )  (8) 

IAI ~(j,+) <,~+ 
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where e(j,s), j=I, . . . , IAI,  are the eigenvalues of h(s) and p~(s-)= 
(1/[AI)Ni(s) is the ion density in the configuration s. 

The function (f=, fi) --> EA([te, f i ;  S) is continuous and concave on the 
whole plane of chemical potentials and differentiable almost everywhere. 
Along the lines parallel to the f~ axis this function is linear with the slope 

8EA 
8fz (f=, fig; s)= --p~(s) (9) 

Along the lines parallel to the fe axis the function (8) is constant below the 
lower edge of the spectrum of h(s) [ = s p e c h ( s ) ]  and strictly decreasing 
above this value. Its slope defines the electron density in the con- 
figuration s, 

~EA 
--Pe(#e; ) (10) ~]~e ( r e ,  f i ;  S)  = A ~ S 

everywhere except at the points of spec h(s). 
In the next section we study the phase diagram in the (re, f~) plane. 

We consider mainly the ion subsystem, i.e., for a given point (f~, f~), we 
look for the configurations s of ions which minimizes the energy density (8) 
(concerning the electron subsystem, we try only to control the density). 
This amounts to constructing the lower concave envelope of the set of 
functions {EA(fe  , fi; S)}, i.e., 

EA(f~, f i)=min {EA(f~, f~; S)} (11) 
s 

which is the ground-state energy density of our system at the point (fe, fi). 
This function has the same properties as the functions EA(fe,/];; s), except 
that along the lines parallel to the f / ax i s  it is piecewiese linear and along 
the lines parallel to the f~ axis the lower edge of spec h(s) has to be 
replaced by - 2 v - U .  Hence the ground-state electron density pAe(fe, fi) 

pA,~ , and the ground-state ion density / t/~e fi) are defined almost everywhere 
by the counterparts of (9), (10). To be more specific, we define the set of 
finite-volume ground-state configurations (g.s.c.) at (f~, fi): 

G A(fe,  f i )  = {S': EA(fe ,  f i ;  S') ---- E A(fe , f i )}  (12) 

Obviously, at any point (re, fii) the set GA(fe, f~) is nonempty. In general 
at (fie, f~) the left and right partial derivatives of EA(fe, f~) are different: 

SEA(re, Ft~) rain A - ~ . pe(I~e, ]~i,S) (13) 

aEA(~e, ~i) 
max P~(fe , /~;  s), ~ = i, e (14) 

O f ~  + s~ GA(~e, ~)  
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The densities pA([te, ~i) are defined if and only if the left and right 
derivatives are equal. This means, in particular, that A ~ P; (/~e, fii) is defined if 
and only if pi(s)  is the same for all s t  GA([te, [ti). 

In general one is interested in properties of the infinite system. There- 
fore, taking the thermodynamic limit A ~ Z ~, we define 

E(~te, ]Ai; s )  = lim EA(~e , Ill; S) ( 1 5 )  

and 

E(fie, f i ,)= lim EA(fie, ~i) (16) 
A ~  ~ 

Assuming the limits exist, these functions share the properties of their finite 
system counterparts (continuity, concavity, differentiability almost 
everywhere). At each point (/~e,/23 they have left and right derivatives that 
are limits as A - ,  Z ~ of the corresponding finite system quantities. Finally, 
we define the set of g.s.c.: 

G(/3e, fii) -- {s: E(fie, f~i) = lim EA(fie, ffLi; S)} 
A ~ Z  v 

(17) 

The phase diagram is then a partition of the (/~e, ]~i) plane into domains 
with the same set G(/~e, fii) of ground-state configurations. 

3. PROPERTIES OF THE PHASE DIAGRAM 

The results obtained can be classified into three types: 

1. Symmetry and general properties (valid for all values of the 
coupling constant  and all configurations, and independent of the 
boundary conditions). 

2. Results for specific configurations of the ions (s+: sx = 1 for all x; 
s - :  Sx = - 1  for all x; and Scb: SxSy= --1 for any pair of nearest 
neighbors; for v = 2, Sob is a chessboardlike configuration). 

3. Results obtained from the expansion of the effective interaction 
with respect to U 1. 

3.1. Symmetries of the Phase Diagram and 
General Properties 

Property 1. If sEG(/le, fii ) with densities Pe and 
--s ~ G(- f ie ,  - f i i )  with densities 1 - Pe and 1 - Pi, respectively. 

Pi, then 
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This is a consequence of the equalities 

E ( f e ,  f i ;  s) = E (  - -  ]Ae, - -  ~ti; - -  S )  - -  ( r e  -[- f i )  

D e ( f i e ; S )  = 1 - -  p e ( - - ] A e ;  - - S )  
(18) 

which are obtained by means of the hole-particle transformation for both 
sorts of particles. (4) Therefore, it is sufficient to study the phase diagram in 
a half-plane of the (re ,  f i )  plane, for instance, fie ~> 0. For fe  = f i  = 0 the 
system is invariant under the hole-particle transformation and at this point 
Pe = Pi = 1/2. 

P r o p e r t y  2. If sEG(fe, f i ;U ) with densities Pe and Pi, then 
--SE G(~e, - f i ;  - U)  with densities Pe and 1 -  p~, respectively. 

This property is derived in a similar way as the previous one. It 
enables us to restrict our considerations to positive U. From now on, we 
assume U > 0. 

It follows from the concavity of the function (fe, f~) ~ E(fe , /~)  that 
the functions fe-'-~pe(fe, fi) and fi---~pi(~e, fi) a r e  nondecreasing. 
However, slightly stronger statements can be formulated. 

We consider first variations of pi along vertical lines in the (fie, ~ )  
plane, i.e., constant re" 

P r o p e r t y  3. For f~' > f;  and s" e G(f;'), then either s" e G(f;) or 

Pe(s")> sup pi(s) 

Since /~e is held constant, (8) yields 

e ( f ; ' ;  s) = E( f ; ;  s) - ( f ; ' -  f ; )  p , (s )  (19) 

Therefore 

E(fiT; s") - E(fT; s') 

= E ( f i ; ; s " ) - E ( f ; ; s ' ) - ( f T - ~ ; ) [ p e ( s " ) - p i ( s ' ) ]  (20) 

For s"eG(f; ' )  the left-hand side of (20) is nonpositive for all s'. If 
s"r then E( f ; ; s" ) -E( f ; ; s ' )>~6>O for any s' in G(f:) and thus 
f ; ' >  fi~ implies pi(s")> pi(s') for any s' in G(f;). 

Then, using Properties 9 and 11 derived below, for any fe in the strip 

[fie[ ~<fie=max{ ~ U--2v} 
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(where cr is given in Appendix B), there exist values of fi~ where the 
chessboard configurations are the only periodic g.s.c.; we thus have the 
following consequence of Property 3. 

C o r o l l a r y  1. If ]fie] ~<fie, then either p i=  1/2 and the chessboard 
configuration is the only periodic g.s.c., or p~r 1/2. Furthermore, for the 
chessboard configuration, Pe = 1/2, since fie is in the gap of spec h(Scb ). 

A property similar to Property 3 holds along horizontal lines in the 
(/2e, fii) plane, i.e., constant/7/ 

~" G - " "  s "  P r o p e r t y  4. For #~ > fi', and s"e  (/,~), then either G(/Ye) or 

pe(~2;S")> sup pe(~;;S) 
s c G(~'e) 

Indeed, if the function E(fite) is nonlinear in the interval [fi'e, fi~'], the 
result is immediate, since concavity, (13), and fi" > fi'~ imply 

sup pe(fi'~;s)< inf pe(fi~;s)~p~(fi'e~;S) 

On the other hand, if E(fie) is linear on this interval, and s"r G(fi'~), then 
the result follows again from concavity. 

Before we formulate the next property, we need to make a few 
observations. Let s be some ion configuration and let us add to s a certain 
number of ions to obtain g. This implies that h(g)= h(s)+ U AS, where 
AS is a positive operator. Consequently, e(j,g)>e(j, s), j =  1 ..... dAI, and 
the number of eigenvalues of h(g) below a certain level fie is not greater 
than the number of eigenvalues of h(s) below this level. Introducing the 
support of s ( = {x ~ A I s~ = 1 } = supp s), we then have 

pe(fite;g)<~pe(fie;S ) if supp 2~  supp S (21) 

In particular, for any s, 

P e(fie ; S + ) <~ P~(fie ; S) <~ P~(fie ; S -  ) ( 2 2 )  

The next observation is that we can express E(fi~,fii;s) in terms of 
Pe(fie; S); f/if E([ze,(~,;s)= - dl~p~(t~;s)-(fi,+S)p,(s) (23) 

O:3 

Therefore, for any s, g the inequality E(fi~, ~;  g)< E(fie ,  ~ti; s) is satisfied 
if and only if 

f~e dl.t [pe(~;s)--pe(#;S)]<(fii-'b U)[Pi(g)--pi(s)] (24) 
- - o o  
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Now, if s and g are such that supp s c supp g, then Pc(fie ; S) -- P(fie ; S) >~ O, 
pi(~) > pi(s), and (24) yield 

if E(ge,~) < E(/~e, s), then for 'fi'e< #, we have 

d# [pe(/Z; S) --  pe(/~, S)-I ~ d~ [fie(/%; S) --  pe(/%; ,~)] 
- - o O  - - o o  

< (/2, + U ) E o , ( s )  - o,(s)] (25) 

i.e., E(fi'~; ~) < E(/2'e; s). Summing up, we have the following result. 

Lernrna 1. If supp g=  supp s and E(fi'e;g)>E(fi~; s), then 
E(ue, ~) > E(~e, s) for ~ > /2;  

We are now ready to establish the following result. 

Property 5. For fi;' > fi'e and s" e G(fie'), then either s" ~ G(fi'e) or s" 
cannot be obtained from s ' e  G(fi'e) by adding ions. 

Suppose, on the contrary, that supp s" ~ supp s' for some s' e G(ff~). If 
s"r  G(~'e), then E(/2'e; s") > E(/2',; s'); hence, according to Lemma 1, we 
have also E(l~e, s") > E(l~e, s ), which is in contradiction with the fact that 
s"e  6(/2"). 

This last property together with Property 3 implies immediately the 
following result. 

Corollary 2. If s + E G(/2e ,/~i), then s + ~ G(ffe, ~ )  for every (fi'~,/2~) 
contained in the closed quadrant intersection of the two half-planes/2'e ~ fie 
and fi~ >i fii. 

A similar property holds for s -  with/2' e >t/2e and/21 ~< fi~. 

3.2. Results for Specific Configurations 

Let us start with a few remarks concerning the spectrum of h(s). For 
U = 0 ,  h(s)= T, and its spectrum is in [ - 2 v ,  2v]. For U r  and any s, 
spec h ( s ) ~  [ - 2 v -  U, 2v + U]. The two translationally invariant con- 
figurations s + and s -  have particularly simple spectra which are obtained 
by translation by 4- U of spee T. As might be expected, these configuration 
fill most of the (fie, fii) phase diagram. 

We quote first properties claiming that s + and s -  fill a few half-planes 
of the (/2e, fii) plane. The intersection of the complements of these planes is 
a bounded rectangular domain around the origin which is the only domain 
where other configurations of ions can be g.s.c. First we consider two verti- 
cal half-planes. 
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P r o p e r t y  6. Let fi~> U+2v. For /2 />  U, s + is the unique periodic 
g.s.c.; for/7 i < U, s is the unique periodic g.s.c.; for f i  = U, any s is a g.s.c. 

To establish this property, it is sufficient to notice that if fie/> U + 2v, 
then E(fe, ft~; s) = - ( f~ - -  U) p~(s) - ( U + re), since (1/JAI) Tr S =  2 p / ( s ) -  1, 
and Tr T =  0. 

Using Property 1, we can extend this property for negative values of 
fie: Let f e <  - U - 2 v .  For  /2~> - U ,  s + is the unique periodic g.s.c.; for 
/~i< - U ,  s -  is the unique periodic g.s.c.; for fi~= - U ,  any s is a g.s.c. 

Now we consider two horizontal half-planes. 

P r o p e r t y  7. For  /2~>U, s + is the unique periodic g.s.c.; for 
f ~ < - U ,  s -  is the unique periodic g.s.c. For  f~=  U (resp. - U ) ,  s + 
(resp. s - )  is a g.s.c. 

Indeed, according to (22) and (23), 

E ( f  e, ~ti; s ) -  E(fe,  ~i; s -  ) 

= - - ( f i+  U) Pi(S)+ d#' [,Oe(l~',fi;S)--pe(,U',~i;S)] 
o ~  

i> -(f~ + u) pi(s) >1 0 (26) 

for any s and f i  ~ - U .  The above inequality becomes strict for f~ < - U  
and pi ( s )#  0. Applying Property 1, we get a similar result for s +. 

The set of points (fie, f i )  where the g.s.c, are not known has been 
reduced to the rectangle D = [ - - U - 2 v ,  U +  2v] x [ - U ,  U]. We will show 
that this set is considerably smaller, since s § and s continue to be the 
g.s.c, inside D. 

It was proved in refs. 4 and 5 that at the origin Scb are the unique 
periodic g.s.c. More information was obtained in ref. 1. By means of the 
moment method of Tchebycheff and Markov we obtain the following 
regions in D, where the configurations s § s - ,  and Ssb are the g.s.c. (Fig. 1). 

Property 8. For fe in the vertical stripe - U -  2v ~</~e ~ U-- 2v 
and f i >  f+(/~e), S + is the unique periodic g.s.c.; for fi i= f+(fie), it is a g.s.c. 

The precise form of the function f +  is given in Appendix B. 
Actually, in ref. 1 we considered the case v = 2. However, the results 

remain valid for v ~> 2. The necessary generalization of the expressions used 
in ref. 1 are given in Appendix A. 

The counterpart of Property 8 for s -  follows from Property 1. 

Property 9. For - a ~ < f e ~ < O a n d  

fie[C(U) - D(U)]  + b(U) <~fii<~ fe[C(U) + D(U)]  + b(U) 

seb are the unique periodic g.s.c. 
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Fig. 1. Location of the s +, s-, and sob configurations in the (]Ae, ~i) plane for v = 2. 

The coefficients C(U), D(U), b(U) and the parameter a are given in 
Appendix B. 

Again Property 1 is used to extend the above domain to positive 
values of fie" Since a < U/3, then - a  is in the gap of the spectrum of h(scb) 
and Pe = 1/2. 

The above properties of the configurations s +, s - ,  and sob are 
summarized in Fig. 1. 

The properties listed above are valid for all U. However if U is 
sufficiently large, new general (configuration-independent) features of 
spec h(s) arise. They enable us to formulate additional properties of the 
phase diagram. 

Using the operator inequality (4) 

hZ(s)>~(U-2v) 2 if U>~2v (27) 

we conclude that the eigenvalues e(j, s), j =  1,..., IA[, of h(s) satisfy the 
inequality 

[e(j ,s)l~lU-2vl if U>~2v (28) 

This means that for U>2v ,  a gap [ - - U + 2 v ,  U-2v]  opens in the 
spectrum of h(s) for any s. 

Property 10 (U>2v) .  If/~e is in the gap, i.e., ]/~ek < U-2v, then 
for any s e G(/Te,/~i; U), we have 

p~(s)+p~(s)=l 

This property is an immediate consequence of the following lemma. 
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Lemma 2. Let U>2v and Ni(s) denote the number of ions in s; 
then the number of negative eigenvalues of h(s) is n (s)= I A t -N~(s).  The 
number of positive eigenvalues of h(s) ;~ n + (s) = N~(s). 

To establish this lemma, we adapt an argument from the proof of 
Theorem 2.1 in ref. 4. We note that for any configuration s we have the 
orthogonal decomposition of the single-electron Hilbert space: 

~4~(A) = )ff(supp s ) � 9  Jet~(A\supp s) 

where Jg(supps)  is generated by vectors whose support is in supp s, 
dim ~ ( s u p p  s ) =  Ni(s). If U >  2v, then zero is not an eigenvalue of h(s) for 
any s (28); therefore, 

n (s)+n+(s)= tAI (29) 

This induces another orthogonal decomposition: 

Jg~(A) = ~,ut~+ (s) @ ~ (s) 

where .)if+ (s) [x/Y(s)] is the subspace generated by the eigenvectors of h(s) 
whose eigenvalues are positive (negative), dim ~ +  (s) = n + (s). Suppose that 
n_(s) < IA[ -  Ne(s). Then there is ~0 e o~(A\supp s)c~ Jr (s). For this ~0 we 
have 

(~, h(s)~o) > 0 

and 

(~o, h(s)~0)-- (r r~0)+ u(q~, Sq~) 

4NTIt jPq)ll2-UIIq)ll==(2v-U)[](p]p=<0 (30) 

which is a contradiction. Thus, n (s)>>. IA]-Ni(s) .  A similar reasoning 
gives n+(s)>~lAI-Ni(s  ). These two inequalities together with (29) 
conclude the proof. 

P r o p e r t y  11 (U>2v).  Let /~e, /7'e be in the gap, i.e., I/~el, 
rFT'~] < U - 2 v ;  then G(f ' , , ,~)=G(~e,  fii ) if /~'e--/~;=/~e--/~i, i.e., the g.s.c. 
are the same on the l ines/~-/Te = const. 

Indeed, if fie is in the gap, then the sum in (8) can be taken over 
e(j, s) < O. Since 

1 U 
1 ~ e ( j , s ) = U p i ( s ) - ~ - - ~ T r l h ( s ) l - ~  

IAI ,j,,)< o 
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and pe(Fte; S)= 1--pi(S) (Property 10), the energy (8) becomes 

EA(fe,~i;s)=(~e-Ft~)P~(S)-~-~l Trlh(s) l -  re+ (31) 

Therefore the difference EA(~e, ~i; s')--EA(Fz~, ~; s) is constant along the 
lines /~e --/~i = const. 

If U >  2v, Property 11 together with Property 9 enables us to extend 
the domain where S~b are the g.s.c. Namely, Sob are the g.s.c, in the 
parallelogram obtained by translating the segment that is the intersection 
of the /~e = 0 line with the region described in Property 9 across the gap 
parallel to the fe = ~i line. 

The consequences of Properties 10 and 11 are summarized in Fig. 2. 

To conclude this section, we shall show that for any ion configuration 
s there exists a rectangle in the (fie, /~i) plane, strictly inside D, such that 
s cannot be a g.s.c, for values of (/~e, /7i) outside this rectangle. 

P r o p e r t y  12. 1. For any configuration s there exist critical values 
/2C(s) in ] - U - 2 v ,  U + 2 v [  and /~(s )  in I - U ,  U[ such that (Fig. 3) 

E(s+)=E(s-)=E(s) for ~e=~;(S), f~=~;(S) 

Furthermore, for any s Cs +-, then s CG(~e, ~) if (/2~,/i~) is strictly 
inside D, but outside the closed rectangle defined by the points 
(12e~(S), /~;(S)) and (--/~e~(--S), --~;(--S)). 

2. If S-- --S, the above rectangle is centered at the origin. 

U 

I I ] ~ - -  

I 

I I 

i I Q @ �9 

Fig. 2. Phase diagram for U > 2v, v = 2. 
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Fig. 3. The  curve  f + ( / ~ )  def ined by  E(s+)=E(s ). 

Let us first recall that for fie ~ U--~ 2v, we already know that E(s +)= 
E(s- )=E(s)  if fii= U; for /~e< - - ( U + 2 v )  the same is true if fii= - U .  

We shall establish this proposition by proving several simple lemmas. 
From (23), together with the value of E for fie = U--~ 2V, w e  obtain first 

fu+2v d# Pe(#; S) = 2v + 2U[1 - pi(s)] (32) 
--oo 

Then, from the symmetry properties 

Pe(fie; S)-b Pe(-- f le ,  -- S ) =  1 
(33) 

pi(s) + p , ( - s )  = 1 

and (32) we have 

E(fie, fii; s) - E(fie , fii; - s )  

f,~e 
= - l T e -  fi,[1 - 2 p ~ ( - s ) ]  + _ d# Pc(#; --S) (34) 

,Ue 

Therefore E(fie, fit; s)= E(~ e, fie; - s) if and only if 

f i ; I - 1 - 2 p ~ ( - s ) ] =  If ie  + _ dppe(l~;-s) (35) 
--k/e 

Furthermore, the function ~7;= fii(/~e; s) defined by (35) is nondecreasing 
with fie if and only if Pc(fie;--s)+Pe(--fi~,--S)>~ 1, i.e., if Pe(fie;--S)>~ 
P e(Fte ;S). This will be in particular the case for s = s +; indeed, p e(~te ;S - )=  

~ . S +  Pc(fie + 2U; S +) >1 Pe(#e, ), since Pe is nondecreasing with fie" Therefore 
we have the following result. 

I . emma  3. The equation E(fie, fi~;s)=E(~e, f i~;-s) defines a 
function fi~=fs(fie) which divides the (fie, fi~) plane into two domains, 



926 Gruber et  al. 

one where E ( s ) < E ( - s )  the other where E ( - s ) < E ( s ) .  Furthermore, 
f , ( f e ) = - - f s ( - - f e )  and f s ( f ~ ) = U  for fe>tSupspech(s) .  The curve 
f i = f + ( f e )  associated with E ( s + ) = E ( s  - )  is strictly increasing for 
f ~ [ - U - 2 v ,  U +  2v]. 

Let us then introduce the following definitions: with s any periodic 
configuration we associate first the function 

i.e., 

Notice that 

Since 

f ~e 
G,(fe) = - d# pe(lJ; S) 

- - o o  

G,(fe) = E(fie, fti; s) + (fii + U) pi(s) 

(36) 

1 
= lira 777,, ~ [ei(s)--f~ ] (37) 

A ~. co I111 ~j(s) ~< #e 

for fe,,->sup spech(s): Gs(fe) = U [ 2 p i ( s ) -  1] - r e  

for /~e ~ inf spec h(s): Gs([te) = 0 

inf spec h(s) > inf spec h(s ) = - 2 v  - U 

we can define f~ = fe~(S) and f[=lT[(s)  by the equations 

G.(/2e ~) = [-1 - pi(s) ] G_ (f~) + p~(s) G + (fi~) 

Gs([te) > [1--p/(S)] G (fe) -t- p~(S) q + (fe), 

and 

( f~+  U)=  G + ( f ~ ) -  G_(f~) 

Let us remark that for fie ~> U +  2v 

Gs(fe) = U[2pe(s)-- 1] --re  for all s 

and thus 

Gs(fe ) =- I 1 - - p i ( s ) ]  G_(fie ) + p,(s) G + (fe ) 

for Ifel/> U + 2 v  

(38) 

--2v--U<fie<~Ce (39) 

(40) 
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On the other hand, 

as(re)> [1 - p i ( s ) ]  G (#te)+ p,(s) G +(fe) 

for flee ] 2 v -  U, inf spec h(s)] w [sup spec h(s), 2v + U[ 

and thus 

- 2 v -  U < / ~  ~<2v + U 

~ c < : ~  - U < # i - ~ U  

I .emma 4. For any periodic configuration s, we have 

~ c  ~ c .  ~ c  E ( ~ e ,  # i ,  S + ) = E ( # e  ' ]li,~c. s ) = E(~ee, ]~i,~c" s )  

Indeed, from (37), 

E(~; ,  ~;; s + ) = G+(~ ; )  - (~; + U) 

E(~; ,  ~;; s - ) =  a ( ~ ; )  

together with (40), this gives E(s + ) = E(s ). 
Moreover, 

E ( f ; ,  ~;; s) = a s ( G )  - (~7 + u )  p,(s)  

and (38) yield 

927 

(41) 

(42) 

E(~; ,  N;  s) = E1 - p , ( s ) ]  E ( f ; ,  N;  s -  ) + p,(s)  E ( f ; ,  ~;; s + ) 

which concludes the proof. 

k e m m a  5. For any periodic configuration s, then s6 G(fie, ~i) for 
fie < fe~(s) and any ~i. 

Indeed for fie < fi~e(S), (39) yields 

E(fie,~,;s)>El-p~(s)]E(fir )+p,(s)E(#Le,#t,;s +) (43) 

E(fe, ~i; s) >min{E(s+), E(s )} 
Therefore 

Lemma 6. For any periodic configuration s, then sr a(]le, fii) for 
~i < fly(s) and any/2e. 

Indeed, let us consider fi;</~7(s) and fi'ee [ g + ( f ; ) , ~ ]  (see Fig. 3), 
where fie = g+(fi) is the curve defined by E(s+)=E(s-) .  For this value 

822 '66  3-4-16 
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(fi; , /~) we know that E(/2 e, #i,'"s ) < E(/~;, #~,'" s) and thus Lemma 1 yields 
E ( ~ ; ' ,  - ' .  - . . . . .  ~ '  #~, s -  ) < E(#e, #i, s) for any >/Y~. 

Repeating the same argument with the configuration - s ,  and using 
the symmetry property, we conclude that 

sq~G([te, fii ) for fi~> -#~'~(-s) (anyfii) 

andfor  f i i > - f i ~ ( - s )  (anyfi~) 

All these results have been summarized in Property 12 above. 
From the above lemmas we can also deduce the following result. 

C o r o l l a r y  3. (a) I f~;(s )=U+2v,  thensisag.s.c, onlyonthetri-  
vial half-lines [/~il = U, [fie] ~> U+2v. 

(b) If fi~(s) < U +  2v, then either: 

1. G,(fie) < Gmix(l~e) for fi; < / ~  < fi; + 6; or 

2. Gs(fie)=Gmix(fie) for t i ; < f i e < / ~ ; + 3 ;  or 

3. G,(fie) > Gmix(/~e) for fi; </~e < tic + 6; 

where 

Gmix(/ ]e)= [ 1 - p i ( s ) ]  G (fie)+pi(S)G+(fie ) 

The corresponding reduced phase diagrams relating s +, s - ,  and s 
around (fi;, fi~) are represented in Fig. 4, where (1) on the hatched domain, 
E(s)<min{E(s+),E(s-)};  (2)on the thick like, E(s+)=E(s ); (3) 
(fie ~, fi~) is the only point where E(s)= E ( s + ) =  E(s-). 

Remark. For configurations such that p~(s)= 1/2, Eq. (35) yields 
the following sum rule: 

f~e ]~e = ~ du Pe(#; S) 
#e 

which should be useful as a test for numerical investigations. 

For the special case of the chessboard configuration (v = 2), we can 
then give explicit values of/~e for which scb cannot be a g.s.c. 

P r o p e r t y  13. For the chessboard configuration in two dimensions, 
we have the lower bound f~2(Scb)> --U if U>4.12,  and thus Sob cannot be 
a g.s~c, for /~e smaller then - U, the lower edge of the gap of spec h(scb). 

(We conjecture that this property remains valid for all values 
of U >  4.) 
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Indeed, if U~>2, then G+(/~e)=0 for /~e~<-U and the slope of 
� 8 9  is -1 /4 .  The concavity property of Gs(f~e) then yields a 
simple sufficient condition for /ie~(Scb)> --U (see Fig. 5), namely 

1 
Gcb(f~ = - U) > ~ G 

2G_ - U <  - ( 1 6  + U2) 1/2 = inf spec h(scb) 

where G_ = G (/~ = - U ) ,  from which we have 

1 
Gob(fie = - U) > ~ G 

G 2_ - 4  
U > - -  

G_ 

A straightforward calculation yields 

8 
G ~ I I  

7C 2 

On the other hand, using a linear bound for the spectrum of sob, 

ej(cb) = [4(cos kx _ cos ky) 2 + U 2] 1/2 < a + b I cos kx _ cos kyl 

we obtain 

Gob(f ie  = - - U ) > - - 2 ~  [ U ( 1 - - 8 ) +  (16+ U2)U2 + ( ~ - - 2 ) ( 4 +  U2) 1/2] 

from which we have the bound /~e~(Scb)> --U if U >  4.12. 

- ~/]16*U 2 I 

- U - 4  x // -U 

-Gcb(~e) 

\ 

m, ~t e 

Fig. 5. Conditions for f~(Scb ) > - -U for v = 2. 
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3,3. Expansion of the Effect ive Interact ion in 
Powers of U -1 ( v = 2 )  

To gain some insight into the domain of the chemical potential plane 
where no rigorous results are available, we want to investigate in this last 
section the properties of the phase diagram in the limit of very large U. For  
this discussion we consider a finite two-dimensional square lattice and 
expand the effective interaction E([te, fii;s) in powers of U -1. Then we 
shall search for the ground states of the approximate Hamiltonian to 
different orders. Although this approach does not yield rigorous results, it 
will give some insight into the expected structure of the phase diagram for 
large U. 

To first order in U i, we have shown in ref. 1 that E(fie, fii; s) is the 
Hamiltonian of the antiferromagnetic Ising model in a magnetic field, with 

1( ~ ~ J = - 1 / 4 U  and h = 5  #e--/~i)" It is well known that this model has two 
critical values of the magnetic field. Therefore, to first order in U-1, we 
conclude that for ]~e-/~il < 2 U  i the chessboard configurations are the 
only ground states, while for Ifie--fiil > 2 U  1 it is s + or s . Moreover, for 
Pile-fi,f = 2U-1 there is an infinite number of ground states with nonzero 
residnal entropy. [Let us recall that in ref. 1 it was proved that for 
I]le--~lil < U -1, Scb are the unique g.s.c, and for Ifie-fiit > 4U-1, s + or s -  
is the unique g.s.c., for the exact interaction E(fie, fi~; s).] 

The question then arises: what is the effect of the higher-order terms? 
It is not difficult to see that all the even terms of the expansion vanish. 
Thus, to answer this question, it is necessary to go at least to order U -3. 

The first part of our derivation holds for any v. We assume that U > 2v 
and ]fiel < U--2V. In this case E(fi~, fi,;s) is given by (31), and thus we 
have to expand Tr  Ih(s)l: 

Tr Ih(s)l =Tr[h2(s)]l/2=Tr[(T+ US)2] 1/2= UTr(1 +A) 1/2 (44) 

where 

A =  U - 1 J - k  - U 2 T 2 ,  J= T S + S T  

To obtain the terms of order U 3, we expand (44) to order 4 in powers 
of A: 

( Trlh(s)l=UTr 1 +A--~-+ 16 128j+O(U-S)  

1 je  3 J2T2 5 j 4 \  
-8U+~ U 3 128~5  ) = C U + T r  +O(U s) 
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1 = CU-~-~Tr(TS) 2 

1 v 3 1 ~ 2 ~ ] 
+ 1 - ~ [ T r ( T  STS)+~Tr(T S) - Tr(TS)  4 

+ O(U -5) (45) 

with C a constant independent of s. To compute the traces, we take v = 2. 
For  this case we obtain 

IAI E(~e, f i ;  s, g ) =  ~ ( ~ e -  ~i ) E Sx ~- 3 9  ~ ~ szsy 
x~d x,y~d 

Ix -- Yl = 1 

3 1 
+ 32U------ 3 ~ SxSy+ 16U3 ~ SxSy 

x, yEd x,y~A 
Ix-- yl = x/'2 Ix-- yl =2 

5 E S x S y S z S w - - U c - - ~ ( f e ' ~ - ~ i  "~U) 
+1--~ 2 P~A 

+ o(c~ ') (46) 

The summation in the last term goes over the unit squares (=plaquet tes)  
of A. 

Since fie is inside the gap [ -  U +  4, U - 4 ] ,  we can take fe = 0 without 
any loss of generality (see Property 11). 

Introducing the variable 6 defined by 

2 

f , = ~ +  U 3 

and the rescaled Hamiltonian 

we have 
H'(s) = 1 6 U  3 IAI E ( f e  = 0 ,  f i ;  s)  -~- 8 U  2 IAI 

H'(s)=~qke(s)+2 ~ SxSy+O(U 2) 
P Ix--y[ =2 

i f  s = s l  

if s = g2 

if s = g3 

otherwise 

where the four-body interaction is (see Fig. 6) 

el = --86 - 7 

~ 2  = - 4 6  - 5 
~b~(s) --- |~3 = 29 

( o ( v  2) 

(47) 
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Fig. 6. 

(; 0) (: :) (-:) 
(gl) (gz) (~3) 

Configurations on plaquettes P; ( � 9  - 1, (0) + 1. 

Therefore, in the limit of large U we consider that the configurations with 
~bp(s) = O(U 2) are forbidden, and we neglect the terms of order U -2 in 
(47). We then try to express H'(s) as an m-potential, (8) i.e., 

/-/'(~)= Y~ ~.(~) 
B = A  

where s o ~ GA(~e  , fii) if and only if ~bB(So) ~< ~bB(s) for all B and s. For this 
purpose we rewrite H'(s) in the form 

where 

i-i,(.) = E ~.(,) + E +.(s) 
P B 

x , y ~ P  x c P  
I x - -  yl  = 1 

and B =  (x, y, z), where the three sites are nearest neighbors, vertical or 
horizontal, 

h 
~B(s) = 2(SxSy + sysz + szsz) - ~ ~ Sx 

x ~ B  

and h can be arbitrarily chosen. We then have for the 4-body potential (see 
Fig. 6) 

gl  = ~ P ( g l )  = - - 8 6  - -  15 -[- h 

g2 = ~p(g2) = - 4 6  - 5 + h/2 (48) 

g3 = ~ P ( g 3 )  = 37 

and for the 3-body potential (see Fig. 7) 

e]=OB(s~)=6--k/2 
t ez=~B(s~) = - 2 - h / 6 = ~ s ( s ~ )  (49) 

e4=~B(s~)= - 2 + h / 6  
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Co o o) Co �9 o) (o o ,) (, o ,) 
(<) %) (~;) (<) 

Fig. 7. Configurations on bonds B =  (x, y, z). 

Therefore (see Fig. 8): 

1. For  h =  84+  86 <0 ,  then e ; < e ; < e ' l ,  g 2 = g 3 < g l ,  and thus for 
6 < -21/2 ,  Scb is the only g.s.c. 

2. For  h = 84 + 86 e ]0, 24], then e~ < e4, e2 --~ el,  g2 ----- g3 < g l ,  and 
thus for - 2 1 / 2  < (5 ~ -15/2 ,  sl is the only g.s.c. 

3. For  h = 84 + 86 = 0, then e; = e; < e], ~'2---- g3 < g l ,  and thus for 
6 = -21/2 ,  there is an infinite number  of g.s.c., characterized by 
the condition that on each B the configuration s] is forbidden. 

4. For  h = 24 and 26 > 1, then e'~ = e~ < e~,, gl < g2, and g3 ; thus, for 
5 > 1/2, s + is the only g.s.c. 

5. For  h = 24 and 26 = 1, gl = g2, and thus for 5 = 1/2, there is an 
infinite number of g.s.c., characterized by the condition that on each 
plaquette there is at most one site with s~ = - 1 .  

To find the g.s.c, in the remaining domain 6 e ] - 15/2, 1/2[, we rewrite 
H '  in the form 

H' =Z ~ + Z  0..+Z ~.-+ Z 0.,,, 
P B '  B "  B "  

where B', B", B"  denote bonds with 3, 6, and 8 points (see Fig. 9) and 

{bB, = 2(sxsz + S~Sy + sysz) -- 4 ~ s~ 
x 

]x - -y [=2  I x - - y ] = l  x ( 5 0 )  

1 1 
~b~ . . . .  5 ( l - K )  2 S x S y - - ~ ( 1 - K ) 2 s x  

I x - -  y l  ~ 2 x (7) ~@=~be-2 Z SxSy-~ x Z SxSy+ 4+~K ZSx 
I x  Yl = 1 I x  y l  = 1 x 

hor. 

~ ,~oo~ o o\o o~,~o oooooo 

oooooo oooooo 
000000 
000000 

oo-.oo~ oo~ooo ~o~176 000000 
SoD s, s 2 s 3 s § 

p i =  112 p l=  2 /3  131 = 3 /4  p l=  4 /5  p = I 

Fig. 8. Ground-s ta te  configurations at the order  U -3 for v = 2. 
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�9 �9 �9 ] 

B' 

Fig. 9. 

It" B'" 

Bonds B', B", B". 

and K can be arbitrarily chosen. We thus have (see Fig. 6) 

8'1': #~(~1):  - 8 ~  + 5 

el' = q~(~2) = -46  + 3 + 7K 

', - ,~,, t g  ) = 3 3  + 14K ~3  - -  ~ ' P k  3 

(51) 

For 7 K : 2 - 4 6 ,  we have e ' l '=e; '<e; ' .  On the other hand, for 
0 < K <  1, the configurations which minimize ~bB,, ~be,,, ~be,,, are those 
represented in Fig. 10. Therefore for - 5/4 < 6 < 1/2, the configuration s3 
(Fig. 8) is the only g.s.c. These results are summarized in Fig. l la .  At the 
points # i = 2 U  1-(21/2)  U -3 and / t i=2U 1-1-1U-3 the number of 
ground states is infinite. 

We were not able to find the g.s.c, for 6e  [ -15 /2 ,  5/4]. However, 
looking at the average free energy for several different periodic configura- 
tions, we are led to conjecture that the ground states are those represented 
in Fig. 1 lb. 

We thus obtained the following results: 

1. At the order zero, the line fe = f i  separates the domain where s -  
is the unique g.s.c, from the domain where s § is the unique g.s.c. 
On this line the number of g.s.c, is infinite. 

2. At the o rde r  1, this degeneracy is partially lifted and the line 
/~e : f~ decomposes into two lines, fie : f i -  2 U - 1  which separate 
the domains where s - ,  Scb, s+ are the g.s.c. On both lines the 
number of g.s.c, is infinite. 

( 0 0 0 )  

(.oo) 

(o,o) 
Fig. 10. 

( o . )  oo oo .o  

Configurations on B', B", B"  which minimize the potentials. 
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Fig. 11. 

I I 
I I 

Sc~ I Sl S2 S3 I S* 

I I O 
b) = ................ ~ ................................. t ................. j . . . . . . . . . . . . . . . . .  

2[2"  6[ 2 5 2U I 2[2- 3 

(a) Phase diagram obtained at tile order U s; (b) phase diagram conjectured at the 
order U -3. 

3. At the order 2, this last degeneracy is again partially lifted: both 
lines decompose into 4 lines which separate the domains where s - ,  
- s 3 ,  - s 2 ,  - S l ,  Scb, Sl, s2, s3, s + are g.s.c. On the lines which 
separate (s , - s 3 ) ,  (-sl,Scb), (Scb, Sl), (s3,s +) the number of 
g.s.c, is infinite. 

From this discussion we are led to conjecture that the phase diagram 
of the 2-dimensional Falicov-Kimball model will contain an infinite 
number of domains with a devil's-staircase structure similar to the one 
previously observed in l dimension. (6) 

A P P E N D I X  A 

We give here a list of the various generalizations needed in order 
to extend the results of ref. 1, obtained by the moment method, to v 
dimensions. 

The moments m,(k, s) are given by the same formula as in ref. 1 with 
the following substitutions: 

{ r  1 

\ :  = 

el-~- : , C l ; J = j ~  E SxSx+e j ,  c 1 v - 1  ( A 1 )  
I ~ x e A  j = l  

Cl;v 

C2;(1,2,+) 

C2;(1'2'-- ) ) 
C2~-  . , 

\C2;(v--  l,v, ) /  

1 
C2;(i,J,+) = -  2 SxSx+(ei+- (A2) - I A [  x ~  ej) 

c2 = Ev(v--  1)] -1 ~ r  
i,j,a 

/ r  1 

\ C 3 ; v /  

(A3) 
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COS k i t  ' 
A = 2  ' 

\ c o s  k~ 

/ cos(/<, \ 

,=t ), \ cos (kv  ~" 1 - -kv )  / 

A = 2  ~ cos kj (A4) 
j= l  

cos 2 k l t  
C = 2 ' (A5) 

\ c o s  2kv / 

In the vicinity of s =scb we have the same relations between the correla- 
tions Cl, c2, and c3 as in two dimensions. For instance, we derive the 
relation 3 of ref. 7: for any i, j, i r j, 

0 4 1 -~ l(c3;i ~- C3;j)-- (C2;(i,j, + ) -~ C2;(i,j ' )) 

0 4  ~, r l  + l (c3; i -~c3; j ) -  (c2;(i,j,+)~-c2;(i,j ' ))] 
i<j 

= v(v - 1)/2 + v(v -- 1)c3/2 - v(v - 1)c2 

1 q- c 3 - 2 c 2  ~>0 

Hence 

i.e., 

A P P E N D I X  B 

Here we define the quantities that appeared in Properties 8 and 9. The 
function f+(fie) that gives the boundary of the region where s + is the 
ground state has the form 

4U2 f~ f+(/~e)= - - U +  (-~g) v(U+- zv-t-~e) i d V k ( Z U +  Z v - A ) - 2  

+ (-~n) v 2 d ~ k ( A + f i e )  l A - U + f i e l - ~  (B1) 

where 

~ l = { k i A ( k ) < . 2 f i e - 4 } ,  ~2 = 1-0, 2n]v \~ ,  

The parameters that enter into the linear functions that bound the region 
where sob are the g.s.c, are 
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where 

1 (, 
j ~ 1 - - -  C (U)=( -~ )~  d~k(I+AZ/U 2) 3/2v~ ~ 

U2 ( v A2( 2e + 7) 3v 
D ( U ) =  

U 2 A 2 
~ d V k - - - -  2 v 

Gruber et  al. 

3v 

U 2 

(B2) 

e= (A2 + U2) 1/2, 7 = U + 2 v  

The parameter o- that specifies the interval of admissible values of fie is 

U 
0 - -  

3(1 + 2v/3U) 
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